

CyWi Testbed

Open-Source Wireless Innovation Lab for 5G and Beyond

Team: SDDEC19-02

Advisor/Client: Dr. Hongwei Zhang

http://sddec19-02.sd.ece.iastate.edu/

Project Plan

0

 \cap

0

 \cap

Problem Statement

- Smart agriculture (e.g. modern machinery control) demands robust 5G solutions
- Industry 4.0 requires Cyber-Physical Systems (CPS) and Internet of Things (IoT)
- Wireless labs and testbeds speed up the pace of innovation
 - Simulations are not sufficient radio frequency (RF) research needs physical labs
- CyWi will enable users to define, execute, and analyze wireless experiments

Experiment Lifecycle

- Specification
 - Users provide requests in spec scripts
- Resource Allocation
 - Server unpacks the spec script
 - Server reserves the requested resources (nodes, frequencies, etc)
- Node Self-configuration
 - Nodes receive data for configurations from the database/server
 - **Experiment** Control
 - Performance monitoring, logs, traffic output are collected and exported to the user

Functional Requirements

- System must register users and assign individual accounts
- Resource scheduler must efficiently allocate node resources
- Experiments must be run remotely via web server
- Users will have the ability to export experiment results

Non-functional Requirements

- System status will be tracked and available to users
- Only registered users can access the system
- System must be crash resilient
- Database will be backed up on regular basis
- Software used will be open-source

Constraints and Considerations

- Limited ceiling tiles arranged in a grid of 11x10 tiles
- Limited budget for powerful
 SDRs and quantity of CPS motes
 - Project scope is large and multi-year -- documentation is crucial for continued future development

Market Survey

 \bigcirc

- ORBIT Rutgers University
 - WiFi, WiMAX, OpenFlow, and USRP2
 - Over 100 research papers have been published with data obtained from the testbed
- Powder University of Utah
 - 4G/5G, MIMO, OpenAirInterface (OAI), OpenStack
 - NetEye Wayne State University
 - Wireless sensor networks (WSN)

Potential Risks & Mitigation

Security Considerations

- Restricted access to the locked lab room
- User approval system for testbed account creation
- Server will store minimal user personal information
- Safety Concerns
 - Few during installation, electrical wiring (performed by ETG)
 - Large quantity of cables connecting all components could have been a hazard so the nodes were mounted on the ceiling

Current Cost Estimate

Total Budget	Undetermined							
Cost of Hardware	Price (\$)							
2 x USRP B210	2 x 1,216 = 2,432							
20 x TI CC26x2R	20 x 39.99 = 799.80							
1 x Server Workstation	1,500							
Total	4,731.80							

ρ

Future Cost Estimate

Total Budget	Undetermined							
Cost of Hardware	Price (\$)							
30 x USRP B210	30 x 1,216 = 36,480							
110 x TI CC26x2R	110 x 39.99 = 34,398.90							
11 x Intel NUC Kit	11 x 799.99 = 8,799.89							
1 x Server Workstation	1,500							
Total	81,178.79							

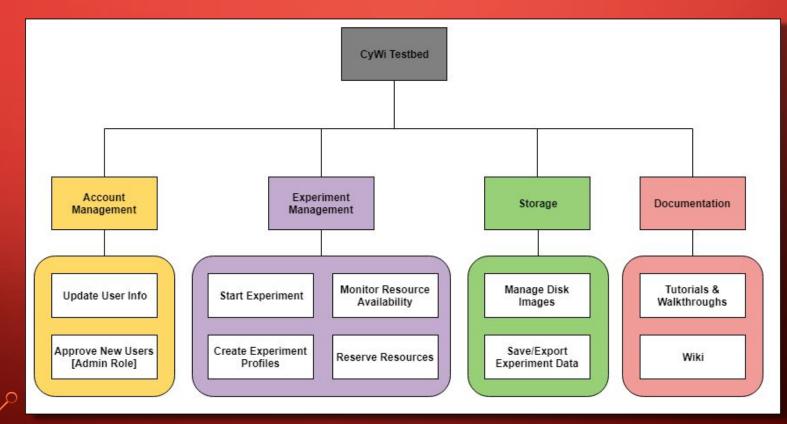
Project Milestones & Schedule

	ID Task Nama		Assigned		019	Mar 2	019			Apr 20	019	May 2019			
ID	Task Name	Duration	Member		4W	1W	2W	3W	4W	1W	2W	3W	4W	1W	2W
1.0	Define the Test bed	1	Everyone		1 Week 100 %										
2.0	Order Hardware	3	Everyone			3 Week	s	100 %							
2.1	Install Hardware	1	Everyone						1 Week						
3.0	Set Up Node Controllers	1	Everyone							1 Week 0 %					
3.1	Configure SDR and IOT Nodes	2	Shay & Tyler & Jian & Chenye								2 Week 30				
3.2	Research SDR and IOT Nodes	6	Everyone				6 Week	S				100 %			
4.0	Implement Node Configuration Manager	3	Ryan & Pawel										3 Week	(S	

Project Milestones & Schedule

ID	TechNews	Desetter	Assigned	Aug 2 Sep 2019				Oct 2019					019		Dec 2019			
ID	Task Name	Duration	Member	4W	1W	2W	3W	4W	1W	2W	3W	4W	1W	2W	3W	4W	1W	2W
1.0	Implement Resource Scheduler	6	?	6 Weeł 0 %	cs													
2.0	Implement Database	2	?	2 Weeł 0 %	cs													
3.0	Implement Web Server	3	?	3 Weel 0 %	s													
4.0	System Integration	5	?							5 Week	cs							
5.0	Set Up Cloud Service	3	?												3 Week	cs		
6.0	Demonstrate The Test Bed	3	Everyone													3 Week	s	
7.0	Write Article	8	Everyone								8 Week	S						

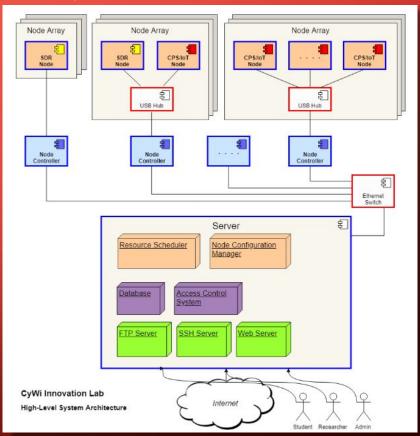
System Design


 \cap

 \cap

Ó

 \cap


Functional Decomposition

 \circ

High-Level System Architecture Diagram

- Users connect via web interface
- Services include SSH, FTP, MySQL, Access Control, Resource Scheduler, Node Configuration Manager
 - Emulab platform will provide many of these functions
 - Node Controllers are accessible and provide management to SDR nodes,
 but are transparent to the CPS motes

Hardware Platforms

CPS Motes: Texas Instruments CC26X2R Wireless Development Boards

- Bluetooth 5 Low Energy
- Zigbee (802.15.4)
- Wi-Fi
- **SDR Nodes:** Ettus Research USRP B210
 - Frequency Range: 70MHz 6GHz
 - Throughput: 61.44MS/s
 - USB 3.0 Connectivity

Hardware Platforms

Node Controllers: Intel NUC8i7HVK Mini-PCs

- O CPU: Intel i7-8559U (2.7GHz up to 4.5GHz)
- Memory: 32GB DDR4
- Storage: 1xSATA, 1xM.2
- O GPU: Intel Iris Plus 655
- Server: Dell Precision 3000
 - O CPU: Intel Xeon Bronze
 - Memory: 16GB
 - O Storage: 4 TB raid 1
 - **GPU:** integrated

Software Platforms

CPS Motes: Texas Instruments CC26X2R Wireless Development Boards

- WiFi, Bluetooth, and Zigbee
- SimpleLink Wireless Development Tools

SDR Nodes: Ettus Research USRP B210

- Linux Ubuntu 16.04
 - OpenAirInterface 5G Development Tools
 - GNU Radio

Test Plan

- Most of the functional testing will be unit testing
- As we finish and test more small pieces, we will integrate and test as a larger system

Main Functional Tests

- Account Registration
- Resource Reservation/Scheduling
- User's Spec Script Execution

- Experiment Results Exportation
- Remote Web Server Access

Test Plan

Most non-functional tests will involve how the system continues to run and back up data
 Also includes security and accessibility

Non Functional Tests

Availability

- Database Backup
 - System Status and Resiliency

- Responsive UI
- Security
- Accessibility

Tests Performed (Results)

CPS Motes

- SimpleLink platform runs without errors
- Transmissions at full power achieved
 0.08% packet loss

SDR Nodes

- Currently, we had not yet had success communicating with the SDRs
- Bugs by Ubuntu to be resolved
- Server
 - Pending hardware arrival

Conclusion

 \cap

0

 \bigcirc

0

Current Project Status In Relation To Roadmap

Defined testbed and roadmap plan

Node Controllers installed

CPS motes and SDR nodes are installed

Node Controllers don't have Linux installed yet

Server is ordered and currently in transit (pending ETG)

Node Controller Manager is pending server installation

Individual Team Member Contributions

- Shay (CPS) Zigbee network setup and performance testing
- Tyler (CPS) Bluetooth network setup and performance testing
- Chen-Ye (SDR) OpenAirInterface research and hardware order/setup
- Jian (SDR) Powder demonstration and Linux setup
- Ryan (Server) Hardware analysis and ordering
 - Pawel (Server) ORBIT/Powder demonstrations and Emulab installation research

Plans for Fall 2019

- Node Controller interaction with SDR nodes and CPS/IoT motes
- Emulab installation and integration with the rest of the system
- Basic profile configurations and images for testbed tutorials/walkthroughs
- Web interface creation and optimization
- Testing includes RF signals, configurations, user interface, etc.
 - Iterative platform refinements
 - Documentation, Documentation, Documentation!

Thank you for listening. Any questions?

Ó